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In the present paper a general concept of a phase-space representation of the 
ordinary Hilbert-space quantum theory is formulated, and then, by using some 
elementary facts of functional analysis, several equivalent forms of that concept 
are analyzed. Several important physical examples are presented in Section 3 of 
the paper. 

1. INTRODUCTION 

The problem of reformulating the Hilbert-space quantum mechanics in 
the classical phase space, that is, reexpressing the quantum-mechanical 
mean values as classical averages over phase-space distribution functions, 
has received a considerable amount of attention from both physicists and 
mathematicians, and has a long history (see, e.g., Wigner, 1932, 1971; 
Husimi, 1940; Groenewold, 1946; Moyal, 1949; Weyl, 1950; Bopp, 1956; 
Margenau and Hill, 1961; Segal, 1961; Mehta, 1964,1965; Pool, 
1966; Cohen, 1966a, b; Misra and Shankara, 1968; Agarwal and Wolf, 1970; 
Cushen and Hudson, 1971; Hudson, 1974; Srinivas and Wolf, 1975; 
O'Connell and Wigner, 1981a, b). For a review of early attempts of the 
phase-space representation of quantum mechanics, see Sudarshan (1962). 

It is known, however, from a result due to Wigner (1932,1971) that 
these distribution functions cannot in general be nonnegative, so they are 
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not true probability distributions. In this connection, see also the papers by 
Cohen (1966b) and by Margenan and Cohen (1968), where it has been 
shown that quantum mechanics cannot be formulated as a classical statisti- 
cal theory in phase space. Nevertheless, the phase-space representation of 
quantum mechanics, giving us the possibility of expressing the quantum- 
mechanical expectations as phase-space integrals, has proven to be very 
useful in the investigation of many physical problems, particularly in 
statistical mechanics (see Mori et al., 1962) and in the study of the coherent 
properties of light (see, e.g., Mandel and Wolf, 1965). 

It should be noted thai nonnegative distribution functions have also 
been considered in the literature (see, for example, Husimi, 1940; Bopp, 
1956; Kano, 1965; Mehta and Sudarshan, 1965); however, they too cannot 
be considered as true joint probability distributions for position and 
momentum, which is clear from the above-mentioned result due to Wigner. 

An important step in resolving this "positive-definiteness dilemma" 
has recently been taken within the so-called "stochastic phase space" 
scheme developed by Ali and Prugove6ki (1977a, b,c), Prugove6ki 
(1978a, b,c, 1979,1981a), and Ali, Gagnon, and Prugove~ki (1981). This new 
approach is based on the observation that the concept of the ordinary phase 
space, as consisting of "sharp" points, is meaningless from the experimental 
point of view, since it is experimentally impossible to measure phase-space 
points to more accuracy than the smallest possible marker of a point, an 
elementary (massive) particle. So, the unavoidable conclusion of the "sto- 
chastic phase space" approach is that the concept of the orthodox phase 
space consisting of sharp points has to be replaced by the more realistic one, 
whose "point" is identified with the mean position and momentum of the 
elementary particle indexing it. 

The stochastic phase space approach has proven to be very useful in 
solving some old problems of the relativistic quantum theory. It leads, for 
instance, to well-defined relativistic quantum currents (Prugove~ki, 1978d; 
Ali et al., 1981), and removes many divergencies which are characteristic for 
the ordinary quantum mechanics (Prugove~ki, 1981a, b). Moreover, there are 
interesting connections between the stochastic phase space approach and 
the Weyl correspondence (Schroeck, 1981, 1982). Thus, it would be desir- 
able to have a mathematically precise formulation of the stochastic phase- 
space representation of quantum mechanics or, even more generally, of the 
concept of a general phase-space representation of quantum mechanics. 

The main aim of the present paper is to give such a rigorous formula- 
tion of the notion of the phase-space representability of quantum mechanics 
by utilizing the concepts of functional analysis, and then to show several 
equivalent forms of that formulation. Some physical examples illustrating 
the general theory are presented in Section 3 of the paper. 
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2. THE GENERAL CONCEPT OF A PHASE-SPACE 
REPRESENTATION OF QUANTUM MECHANICS. 

BASIC THEOREMS 

By a phase-space representation of quantum mechanics we usually 
mean any, presumably one-one, affine (i.e., preserving convex combina- 
tions) map 

F: w ~ F w (1) 

of the convex set of quantum states (consisting of the density operators on 
the Hilbert space H corresponding to a given physical system) into the 
classical probability densities on the phase space F, together with the linear 
map 

A : f ~ A ( f )  (2) 

from the classical to quantum bounded observables, which preserves the 
mean values of observables in the sense that 

( A ( f ) ;  W)q = ( f ;  F~)~ (3) 

where (;)q and ( ; )c  denote the quantum and the classical mean value, 
respectively, that is 

( A ( f ) ;  W)q = Tr( A( f )w) (4) 

( f ;  Fw) ~ = f / (  q, p)F~,( q, p) dqdp (5) 

where F denotes the phase space R 2n (corresponding to a physical system 
with n degrees of freedom), and dq dp stands for the Lebesgue measure on F. 

It can be shown, however, that the existence of the linear mapping A 
need not be postulated separately, since it follows as a consequence of (1). 

To prove this, we shall first note that the affine map F can be 
immediately extended to an affine map P of the positive cone BI(H)+ of 
BX(H), the Banach space of the trace-class operators on H, into the 
corresponding positive cone LI(F)+ of LI(F), the latter denoting the Banach 
space of Lebesgue-integrable complex-valued functions on F, by setting for 
an arbitrary u ~ B](H)+ 

([]u[llF~/~l~rl, i f  u ~ 0 

F ( u ) =  0 if u = 0  (6) 
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where I1" Ila denotes the trace-norm in B I ( H )  (]lUl]l = Tr(u*u)~/z) ,  and then 
P can be uniquely extended to a linear operator acting on the entire space 
Bl(  H ) by letting for an arbitrary v = u 1 - u 2 + i( u 3 - u 4 ) ~ B~( H ), where 
u i ~ BI(H)+,  i =1,2,3,4,  

p(o) = p(u, ) -  P(u2)+ip(u3)-iP(u,) (7) 

It can be easily seen that the above definition does not depend on any 
particular choice of the positive elements u i in the decomposition of v. 
Moreover, since F, when restricted to the positive cone BI (H)+  c_ B l (H) ,  is 
norm preserving: 

I IF(u)l lL,(r)=llulh,  u ~ n l ( n ) +  (8) 

one easily concludes that jb has to be a norm-contracting map of B I ( H )  into 
LX(F): 

IIF(o)IIL,(r) ~< 110111 (9) 

for all v in B I ( H ) .  This means that [IPll <1, where I1" II stands for the usual 
operator norm of 

/~[11/'11 = sup(l[ F(o)I[ L'(r) :v ~ B~(H) ,  l[ vlh = 1 } ] 

Remark.  It is not difficult to check that if F is one-to-one, then its 
(unique) linear extension/" is one-to-one too, and furthermore 

IIP(v)IIL'(r  = Ilvllx 

for all v E B I ( H ) ,  so that P is then an isometry. 
Now, keeping in mind the facts that the Banach duals of L~(F) and 

B I ( H )  are isometrically isomorphic to L~176 ") and B ( H ) ,  respectively (see, 
for example, Dunford and Schwartz, 1958; Schatten, 1960), where L~176 
denotes, as usual, the vector space of essentially bounded complex-valued 
Lebesgue-measurable functions on F, and B ( H )  denotes the algebra of 
bounded linear operators on F, we may consider the Banach dual F*: 
LI(F) * ~ B l ( H )  * of the linear map P as acting from L~ into B ( H ) .  It 
is, clearly, a positive norm-contracting map too. Moreover, since the isomet- 
ric isomorphisms 

B(  H ) - ~  B I ( H )  * 

L (r) L (r) * 
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have been established by using the dualities 

(B,  0) = T r ( B . ) ,  B ~ B(H) ,  v ~ B ' (H)  

( f ,  g) = f / ( q ,  p)g(q,  p) dqdp, f e L~(F), g e  L~(F) 

we see that A ( f )  can be identified with F * ( f ) ,  so that 

A = F* (10) 

as claimed. 
We are now prepared for introducing a precise notion of a phase-space 

representation of quantum mechanics. We replace, for generality, the corre- 
spondence (1) by a more general one 

#: w ~ #w (11) 

where /% is a probability measure on F, not necessarily absolutely continu- 
ous with respect to the Lebesgue measure. 

By a phase-space representation of quantum mechanics we shall mean 
any (not necessarily one-to-one) affine map/~: w ~ #w of the convex set of 
the density operators acting on a given Hilbert space H into the convex set 
of the probability measures on the phase space F. 

It is clear that applying essentially the same extension procedure as 
before, we can extend the map /t to a unique positive norm-contracting 
linear transformation 

#: B ' (H)  ~ M ( F )  

where M ( F )  denotes the space of all bounded complex measures on F, 
which is a Banach space under the norm it inherits as the dual of Co(F), the 
space of all bounded complex-valued functions on F which vanish at 
infinity (for definitions see, e.g., Dunford and Schwartz, 1958). Moreover, if 
/~ is one-to-one, then/2 is obviously one-to-one too, so that/~ is then easily 
seen to be an isometry. 

Note that for a fixed Borel subset E __G F, the map 

v ~  [ # ( o ) ] ( E )  (12) 

is clearly a positive linear functional on BI (H) ,  and therefore continuous, so 
that there exists a bounded positive linear operator x(E) on H such that 
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(see, e.g., Schatten, 1960) 

T r ( x ( E ) v ) =  [ / i (v)]  ( E )  (13) 

for every v ~ BX(H). It is an easy matter to check that x is a POV measure 
(positive operator-valued measure) on B(F) ,  the o-algebra of Borel subsets 
of F. 

Conversely, if x is a POV-measure on B(F) ,  then one can define the 
phase-space representation mapping by 

w ~  T r ( x ( . ) w ) ,  w ~ S  (14) 

where S stands for the set of all density operators on H. 
We thus see that a phase-space representation of quantum mechanics may 

alternatively be described by choosing a particular PO V-measure on B(F). 
Before we go further, we need some definitions. We shall say that the 

phase-space representation /~: w ~/~w is absolutely continuous if for any 
quantum-mechanical state w ~ S its associated measure /z~ is absolutely 
continuous with respect to the Lebesgue measure on F. 

We call # nondegenerate if it is one-to-one. Otherwise,/z is said to be 
degenerate. 

Similarly, a POV-measure x: B(F)  ---, B(H)+ is said to be absolutely 
continuous (respectively, nondegenerate or degenerate) if so is its corre- 
sponding phase-space representation map (14). 

In the sequel, we shall restrict ourselves to the case of an absolutely 
continuous phase-space representation /~: w ~ #w, and denote by F w the 
Radon-Nikod~m derivative o f / %  with respect to the Lebesgue measure on 
F. 

Since/% is a nonnegative measure, Fw is a.e. nonnegative (a.e. stands 
for "almost everywhere"), but, on the other hand, as F w is only "almost 
everywhere" determined by #~, one can assume with no loss of generality 
that Fw >i 0. Moreover, F~, ~ LI(F), since/~w is finite. 

Note that for fixed (q, p)  ~ F, the correspondence 

w ~ Fw(q, p )  (15) 

after extending F: w ~ Fw to a contracting positive linear map F: BI(H)  --, 
LI(F),  defines a positive linear functional 

v ~  [F (v ) ]  (q,  p )  (16) 

on the space BI(H) ,  and therefore continuous. Thus, there exists a bounded 
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positive operator F(q, p)  on H such that 

Tr( F(q, p ) v ) =  [ F( v)](q, p) (17) 

for all v in BI(H). In particular, for w in S 

Tr(F(q,  p)w) = Fw( q, p) (18) 

We shall say that an absolutely continuous phase-space representation 
F: w ~  Fv (w ~ S) is continuous (respectively, bounded) if the map F: 
(q, p) ~ F(q, p) is continuous (respectively, bounded). 

Note that for a fixed (q, p) in F, the map 

w ~ F ~ ( q , p ) ,  w ~ S  

where F is an arbitrary absolutely continuous phase-space representation, is 
clearly bounded, since 

Fw(q, p) -- Tr(P(q,  p)w) = IIF(q, p)wlh 

liE(q, p)llllwlh = IIF(q, p)II 

and therefore 

sup{ Fw(q, p):  w ~ S)  ~< liE(q, P)II (19) 

It is not difficult to prove that F: w ~ Fw is continuous if and only if 
the family {Fw: w ~ S}, representing the image of the set S of quantum 
states under the mapping F, is equicontinuous in the sense that 

V ( q , p )  E FVe > 038 > OVfq'.p')l( q, P ) -  ( q', P')I < 8 

=" V.,~slFw(q, p ) -  Fw(q', P')I < e (20) 

Indeed. for an arbitrary w ~ S 

IF~( q, p ) -  F~,( q', P')I = ITr(F(q, p )w ) -Tr (  F( q', p')w)l 

= IIIF(q, p)wlh - I IF(q ' ,  p')wlhl <~ IIF(q, p)w - P(q', p')wlll 

~< liE(q, p ) -  F(q' ,  p')llllwlh --IIF(q, P ) -  F(q', P')II 

Hence, the continuity of P implies clearly the equicontinuity of ( F., }. 
Conversely, 

IIF(q,p)-P(q' ,p ' ) l l  = sup 
II~ll =1 

sup 
I1~11 =1 

[(q: ,[P(q,p)-P(q ' ,p ' )]~)[  

]Tr([ P(q,  p ) -  F(q ' ,  p')] Pr 
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where Pq, denotes the orthogonal projection onto the one-dimensional sub- 
space of H spanned by q~ ~ H, so we have 

I IF(q ,p ) -P(q ' ,p ' ) l l  = sup IFr (21) 
II~kll = 1 

where F+ stands for F ,  with w = P~, and by (21) we see that the equicontinu- 
ity of { F w } implies the continuity of F, which completes the proof of our 
statement. 

Similarly, F: w ~ F w is bounded if and only if the family { F,~: w ~ S } 
is equibounded, i.e., 

qK>oV<q,p)~rVwEsF~( q, p) <~ K (22) 

The proof is essentially the same as the preceding one. For an arbitrary 
w ~ S  

F,~(q, p)  = IIF(q, p)wlh ~< liE(q, P)II 

and hence it follows that the boundedness of P implies that (F~ } is 
equibounded. Conversely, 

II F( q, P ) II = sup (~b,P(q,p)~b)= sup Tr(P(q,p)P+) 
Ibkll = 1 I1@11 = 1 

sup F+ ( q, p) 
Ilqdl = 1 

so that the equiboundedness of { F,:  w ~ S }. implies that P is bounded. 
Note finally that the family of operators F(q, p) prooide a continuous 
resolution of the identity in the sense that 

frF( q, p) dqdp = I (23) 

where I stands for the identity operator on H. 
The integral above is clearly meant in the weak sense, that is, for every 

w E S  

f r T r ( F ( q , p ) w ) d q d p - - 1  (24) 
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[which is a direct consequence of (18)] or, equivalently, 

fr(q, ,  F(q, p)q~) dqdp = [Iq,[I 1 

for all ~k ~ H. 
Inserting (18) into the classical mean value ( f ;  F~) c we find 

(25) 

( f ;  F~) c = f S ( q ,  p)F~(q, p) dqdp 

so that we get by (3) 

= f / ( q ,  p ) T r ( F ( q ,  p)w) dqdp 

= T r [ w f / ( q , p ) F ( q , p ) d q d p ]  

A ( f )  = f / ( q ,  p)F(q,  p) dqdp (26) 

where, as before, the integral above is clearly a weak integral. Hence, in 
particular, for f identically equal to 1 we get 

A(1) = frF( q, p) dqdp = I (27) 

To summarize, one can say that every absolutely continuous phase-space 
representation map F: w ~ F~ can alternatively be described by its associated 
continuous resolution of the identity F( q, p), each F( q, p) being a positive 
bounded operator acting in the Hilbert space H corresponding to a given 
quantum system. The original phase-space representation mapping F can 
then be recovered according to the prescription (18): 

F~(q, p)  = T r ( F ( q ,  p)w),  w ~ S (28) 

We shall now pass on to the case of a bounded absolutely continuous 
phase space representation F: w ~ F~(q, p), w ~ S, i.e., we assume that the 
corresponding identity resolution F: (q, p ) ~  F(q,  p)  is a bounded func- 
tion: 

3K> OV~q,p)~ fliP(q, p)ll ~< K (29) 
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The assumption above implies that the probability density (28) is suffi- 
ciently well behaved (for any w) in the sense that its characteristic function 

M.,( x, y)  = frFw( q, p )e `r dq dp (30) 

[which is the mean value of the function (q, p ) ~  e i ( x q + y p )  in the "classi- 
cal state" F,,] contains as much information as the probability density F,,. 
itself, since (30) can then be inverted to yield 

Fw( q, p) = (2~r )-  Z" frM,,( x, y )e - i(x.q+y.p) dx dy 

= (2~r) - 2 n f rTr  [ A ( e i<x +Y)) w] e - i~x.q+y.p) dx dy 

where the last equality is derived with the help of (3) (e "x'+y) denotes here 
the function (q, p ) ~  ei(xq+.vP)), and hence 

F ( q , p )  = (21r)-2"frA(eiC~+Y")e-it'~"q+YP)dxdy (31) 

Indeed, by using (28) and (29) we easily find that the probability density F,,, 
is a bounded function: 

0 <~ Fw( q, p)  = Tr(/~'(q, p)w)  = [[/~(q, p)wll 1 

~< liP(q, p)llllwlh = IIF(q, P)II ~< K 

for all (q, p )  in F, so that F w, being a member of LI(F), must also belong to 
L2(F), and therefore M w in (30) is well defined as the Fourier-Plancherel 
transform of (2~r)nF w. 

We thus see from (31) that in the case of a bounded completely 
continuous phase-space representation F: w ~ F~., the associated identity 
resolution F(q, p) is completely determined by the family of operators 
A(e~X+Y)), which is in fact a representation of the dual group of F = R 2" 
in B(H) ,  and conversely, F(q, p )  determines A(e i<x+y')) according to (26). 

In other words, any bounded completely continuous phase-space represen- 
tation F can equivalently be specified by associating a (bounded) operator 
A(e i<x'+y)) with the exponential function e "x'+y'), in accordance with the 
observation made by Weyl many years ago (Weyl, 1950). His famous "rule 
of association" was 

e i(x'+y') ~ e "xQ+ye)'= W(y ,  x) (32) 
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where denotes the closure of an operator (see, e.g., Akhiezer and Glazman, 
1981, Vol. 1, p. 121) and Q, P denote the n-tuples of, respectively, position 
and momentum operators in H satisfying the canonical commutation rela- 
tions [Q~, ~]  = ih6ijl, which imply the following commutation relations for 
the Weft algebra { W(x, y): (x, y) ~ R 2,, }: 

[,h ] W(x,y)W(x ' ,y ' )=exp - ~ ( x . y ' - x ' . y )  W(x+x ' , y+  y') (33) 

A large class of generalized "association rules" has been considered by 
Cohen (1966a), Agarwal and Wolf (1970), and Srinivas and Wolf (1975), 
and all the well-known correspondences are particular cases of the so-called 
"n-rules of association" (see Srinivas and Wolf, 1975) which are of the form 

e i~x+v) ~ f~(x, y)e ilxQ+y'p)- (34) 

where f~ is assumed to be sufficiently well behaved [usually it is assumed 
(Agarwal and Wolf, 1970; Srinivas and Wolf, 1975) that f~(x, y) is the 
boundary value of an entire analytic function in complex variables, and has 
no zeros for real x, y] and has the further properties that 

and 

=1 

~ ( x , y ) = a ( - x , - y )  

where the bar denotes complex conjugation. 
Below, we list some of the well-known rules of association which were 

discussed in great detail by Agarwal and Wolf (1970): 

~2 Rule of association 

1 Weyl-Wigner-Moyal 
cos(x, y/2) Symmetric 

exp[ x 2 + y2)/4] Normal 
exp[ - (x z + y2)/4]  Antinormal 

This table should be completed by a one more example, which is a 
direct generalization of Weyl's association rule: 
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where a, b are two vectors in R n with constant nonnegative coordinates. 
Clearly, (35) is an immediate generalization of the Weyl's association rule 
W, as the latter corresponds to the choice a = b = 0. Moreover, according to 
(31) 

F(q ,  p )  = (2r e-i(x'q+Y'P)A(ei(x+-v)) d x d y  
~F 

= (2~r)- z ' f  e -i(xq+-"'P)e-t(ax)2+(b'""'l/2W(y, x )  dxdy 
"F 

so that F(q,  p )  is proportional to the projection operator Tqp extensively 
studied by Schroeck (1981,1982): 

If one puts 

s q, p)  = (2~rh )-"Tqp (36) 

a i = VarQi,  bi=VarPi ,  i = 1 , 2 , 3  . . . . .  n 

then Tqp projects onto the minimum uncertainty state with exp Q~ = q, and 
exp Pi = Pi (see Schroeck, 1981). 

From now on, we shall assume, for simplicity, that 

F( q, p ) = Ceqp 

where Pqp is an orthogonal projector, and c is a positive real constant 
independent of the phase-space point (q, p). We therefore have a resolution 
of the identity 

frPqp dq dp = c - 11 

where the integral above is meant, as before, in the weak sense. 
The identity resolution e = { Pqp } is said to be atomic if each of the 

projections Pqp projects onto a one-dimensional subspace. Otherwise, we 
call e nonatomic. 

3. S O M E  P HYS IC AL EXAMPLES 

The most  important case of an atomic resolution of the identity 

frPqp dq dp = c - 11, c > 0 (37) 
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is obtained when { Pqp ) comes from a fixed (but arbitrary) vector ~k in H, 
according to the following prescription (Ali and Prugove~ki, 1977): 

Pqp = the orthoprojector onto the one-dimensional subspace of H 
spanned by U(q, p) ~k 

where U(q, p) is a projective (or ray) representation of the additive group of 
R 2n. 

Example 1. Let G be the proper Galilei group specified by the follow- 
ing multiplication rule for an arbitrary pair gl=(bl,al,vl, R1), g2 = 
(b2,a2,v 2, R2) of its elements (see, for instance, L6vy-Leblond, 1971): 

gig2 = (bl + b2,al + Rla2 + b2Vl,Vl + Rlv2, RIR2) 

We recall that the action of proper Galilei transformations g = (b, a, v, R) 
on F $  R 1 is as follows (Levy-Leblond, 1971): 

(q,p, t) ,--, (q',p', t') = g o (q,p, t) = ( R q + v / + a ,  R p +  my, t + b) 

Let g ~ U(g) be a projective representation of G in the Hilbert space of 
square-integrable complex-valued functions ~k (q, P, t) on F *  R ~ defined by 
(Prugoveeki, 1978): 

[ U ( b , a , v , R ) q , ] ( q , p , t ) = e x p  ~ - 2 , / - b ) + m v . ( q - a )  

x b ) - a ) ,  R - l ( p -  my), t - b). 

(38) 
Consequently, the law of ray representation multiplication for U is (Prugo- 
ve~ki, 1978) 

U(bl,a l, v 1, R1)U (b2,a 2 , v 2 , R 2 ) = exp[ ~ - - - ~ b  2 + my 1 �9 Rla 2 

x g(bl+b2,al+ R~a2 + b2vx,vl+ R m ,  R1R2) (391 

If we restrict ourselves to the case of fixed t, say t = 0, then we are naturally 
led to consider the U-subrepresentation of the subgroup 

Go= ( g ~ G :  g= ( 0 , a , v , | ) )  (40) 

in the Hilbert space of square-integrable complex-valued functions +(q,p) 
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on the phase space F, which is, according to (38), of the form 

[U(O,q, P ,1)~k]  (q ' ,p ' )=  exp[ h p - ( q ' - q ) ]  ~ ( q ' - q , p ' - p ) ( 4 1 )  

and it is not difficult to check that the family of orthogonal projections P,~ 
onto the one-dimensional subspaces of L2(F) spanned by ~qp = 
U(O,q,p/m,1)~, ~ being a fixed norm one vector in L2(F), obeys (37) with 
c = (2rrh) - 3. 

Example 2. By considering the conventional unitary ray representation 
U(b,a,v, R) of the proper Galilei group G on the Hilbert space L2(R3), we 
obtain for the corresponding U-subrepresentation U(O,q,p/m,1) of the 
subgroup G O [compare (41)] 

[U(0,q, P ,11) ~k] (x) = exp[ h p .  ( x -  q)] ~ ( x -  q) (42) 

where ~ ~ L2(R3), and the family ~ =  U(O,q,p/m,1)~k, ~ being a fixed 
member of L2(R 3) with norm one, is again easily proven (Ali and Prugove~ki, 
1977) to provide a continuous resolution of the identity {P~,} on L2(R3). 

Example 3. Let H be the Hilbert space of square-integrable complex- 
valued functions on R n, and let W(q, p) be a strongly continuous represen- 
tation of the additive group of R 2" into the Weft algebra on H, that is, 
W(q, p) are unitary operators on H satisfying the commutation relations 

[/h " , '  ] 
W(q, p)W(q', p') -- exp -~(q - q'.p) W(q + q', p + p') (43) 

It can then be shown that the family of v e c t o r s  l~qp = W(q, p)~,  where 
is a fixed element of H with unit norm, provide a continuous resolution of 

the identity in the sense that the corresponding family Pqp of one-dimen- 
sional projectors obeys (37) with c = (h/2~r) n. Moreover, it is interesting to 
note that the above Weyl algebra representation is equivalent to that of 
Example 2 (for n = 3). Indeed, we have 

h [W(aq, bp)~](x)=exp[ibp.(x+-~aq)]~(x+ haq), a ,b~R  1 

so that for a -- - h -  z and b = h -  ~ one obtains 

[ w ( -  h- q, = exp[ p /x 

i m J 
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that is, 

i U(O,q,P,1)=exp[-~-~p.q]W(-h-lq, h-lp) (44) 

Example 4. Let F = R  2", H= L2(Rn), and 

U( q, p) = V( h-Xp)U(- h-lq) (45) 

with V(p)=exp(ip.Q), U(q)=exp(iq.P), where Q and P denote the 
n-tuples of, respectively, position and momentum operators in H. Recall 
that [U(q)~](x) = ~(x + hq), [V(p)~](x) = exp(ip.x)~k(x), where ~k 
L2(a"). 

We clearly have 

i U(q,p)=exp(-~--~q.p)W(-h-lq, h-lp) (46) 

so that 

[U( q, P)r hP'X)~k(x- q), ~ L2(R ") (47) 

It has been shown (Ali and Prugove~ki, 1977) that the family (Pqp} of 
orthoprojectors onto the one-dimensional subspaces of H spanned by 
U(q, p)r where ff is a fixed element of L2(R n) with norm one, satisfies (37) 
with c = (27rh)- n. 

4. THE CASE OF AN ATOMIC IDENTITY R E S O L U T I O N  

We shall now return to the general scheme of a phase-space representa- 
tion of the Hilbert-space quantum mechanics described in Section 2, and 
concentrate our attention on the particular (but evidently the most im- 
portant) case of an atomic identity resolution 

frPqpdqdp=c-XI, c > 0  (48) 

resulting from an overcomplete family of vectors 

~qp = U( q, p )  ~k (49) 

where ~k is a fixed (but arbitrary) nonzero vector in a Hilbert space H, and 
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U stands for a (fixed) map from F = R 2n into B(H), the algebra of bounded 
operators on H. We recall that Pqp is defined as the orthogonal projector 
onto the one-dimensional subspace of H spanned by I~qp. 

Our main aim in this section is to give several equivalent descriptions 
of the concept of this particular case of a phase-space representation of 
quantum mechanics. 

Let us define the mapping 

M: (q,, ~) ~ M [ ~ , ~ ]  (50) 

from H x H into L2(F) by setting 

M[~k, ~](q,  p)  = c~/2(U(q, p)eo, q,) (51) 

It is easy to verify that M is a sesquilinear map of H x H into L2(F) such 
that for all q, and ~ in H 

IIM [ q,, q,] II L~<r) = Iltkllll't'll (52) 

The equality above leads (and is actually equivalent) to 

( M [ ~ ,  ~1, M[~ ' ,  ~'])L~(r)= (~, ~ ' ) ( , ' ,  ~) (53) 

so that we arrive at a striking similarity with the formula 

(q'| ~'| = (q~, q/)(*' ,  *) (54) 

where (., ")2 stands for the Hilbert-Schmidt scalar product, and qJ | ~ is the 
bounded operator on H (~k, ~ ~ H) defined by (see, e.g., Ringrose, 1971; or 
Schatten, 1960) 

= (q,, ( 5 5 )  

One can therefore expect to be able to establish an isometry from B2(H), 
the Hilbert space of Hilbert-Schmidt operators on H, into L2(F), and this 
will indeed be shown later on. 

Remark. The isometric embedding 

~k ~ Mer (e, ~k ~ H, e fixed) 

of the Hilbert space H into L2(F), considered by Ali and Prugove~ki (1977), 
is obviously related to the mapping M as follows: 

Meek = Ilell-tM[ q', e] (56) 
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Now, by using the Riesz representation theorem we can prove 
following result: 

There exists a unique bounded linear map 

V: f ~ V ( f )  

the 

of L2(F) into B(H), the algebra of bounded linear operators on H, such that 

( q~, V ( f  )r ) = f / (  q, p)  M[~k, co] ( q, p)  dqdp (57) 

for all ~, r ~ H and all f ~ L2(F). 

Proof. For a fixed f in LZ(F) we define a bounded sesquilinear form a/ 
on H by 

a/( +, ~,) = f f (  q, p) M [ q , , , ]  ( q, p) dqdp 

= ( M [ + , ~ ] , f ) u < r )  

Note that the boundedness of af is almost obvious, since for all ~k and q~ in 
H 

la/(~k, q,)l ~ < I(M[qJ, q'], f )  L2<ml 

~< IlM[q', ~]LI L2(r)IIfIIL2(r) 

= IIq'llllq'llllfll 

where the last equality was derived with the help of (52). 
Therefore, there exists by Riesz representation theorem a unique 

bounded operator V(f)  on H such that 

af( q,, q~) = ( q~, V ( f  )ep) 

for all +, q~ ~ H, and the rest of the theorem follows in a straightforward 
manner. 

Now, the following statement relates the linear map f ~ V(f)  intro- 
duced above to the Ali-Prugove~ki correspondence q, ~ MeSh: 

For a fixed norm one vector e in H, the map 

f ~ V ( f ) e  
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of L2(F) into H, when restricted to the subspace L2(Fe) - Me(H ), is the 
inverse of the Ali-Prugove(ki embedding ~b ~ Me~b , ~b ~ H. 

Proof By the preceding theorem and by (56) we have (q~, ~b, d, e are 
here arbitrary elements of H): 

( q~, V( Ma~b )e ) = fv( )( q, p) M[~,  e] ( q, p) dqdp 

= IIdll-~frM[q,, d](q, p)M[ep, e](q, p) dqdp 

= IIdll-l(M[q~, e], M[~ ,  d]) L2<r) 

= lldll -~( ep, qJ )( d,  e ) 

where the last equality is obtained by using (53). 
The equality above, valid for all q~ in H, gives us 

V(Ma~b)e = Ildll-l(d,e)+ (58) 

hence, in particular, 

V( Me~b )e= ~b 

for all ~ ~ H, which concludes the proof of the theorem. 
Note that by using (55) and (56) one can rewrite (58) in the form 

( ~|  )e = ( d, e ) ~ = IldlIV( Mdq~ )e = V(M[~b, d ])e 

~b, d, e being arbitrary elements of H. Hence 

V( M[ ~/, d ]) = q,| (59) 

for any pair +, d of vectors in H, and clearly [see (54) and (52)] 

IIV(M[ 4,, d ] ) lh  = IIM[q~, d]llL2~r~ (60) 

where II" 112 stands for the Hilbert-Schmidt norm (for a definition, see, e.g., 
Schatten, 1960; or Ringrose, 1971). 

Let now Lg(F) denote the closed subspace of L2(F) spanned by the 
functions M[~, q~], where q, and q~ run over the Hilbert space H. It is almost 
obvious that the map f ~  V(f),  f ~ L2(F), when restricted to L2(F), is a 
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unitary mapping onto B2(H), the Hilbert space of the Hilbert-Schmidt 
operators on H. Indeed, the map V, when restricted to the linear span L of 
the set (M[~,  ~]: ~k, ~ ~ H }, is obviously an isometry, and, clearly, V(L) is 
identical with the set of the operators of finite rank on H. Since the later 
form a dense set (with respect to the Hilbert-Schmidt norm I1" II2) in B2(H) 
(see, e.g., Schatten, 1960), we see that VILe(r) must be an isometry onto 
B2(H), as claimed. 

We therefore have an isometry 

U: B 2 ( H )  ---* L2 ( r )  

u =  z l ~ r  ) (61) 

as claimed before. 
Remark. The above-mentioned isometry is clearly a *-monomorphism 

of B2(H), considered as an H*-algebra, into the H*-algebra L2(F) (for a 
definition of an H*-algebra, see, for example, Rickart, 1960). 

Moreover, since as an H*-algebra, L2(F)=  L2(R n• R") is *-isomor- 
phic to the H*-algebra B2(L2(Rn)) of the Hilbert-Schmidt operators on 
L2(R ~) (see, e.g., Ringrose, 1971), we actually have a *-monomorphism of 
the Hilbert-Schmidt H*-algebras associated with H and L2(R"), respec- 
tively: 

B2(H)  C_ B2(L2(R,) )  (62) 

To conclude our discussion of the concept of an atomic identity 
resolution (Pqp } resulting from an overcomplete family of vectors ~bqp = 
U(q.p)~b, t~ E H, with U denoting a (fixed) map from F into B(H), we 
shall summarize the results we have obtained in this section in the following 
single theorem: 

Theorem. The following two statements are equivalent: 
(1) There is a map U: (q, p ) ~  U(q, p) of the phase space 

F = R  2" into B(H), the algebra of bounded operators on the 
Hilbert splice H, such that for all ~ and q, in H 

f r (~ ,  U( q, p ) ~ ) ( U( q, p)~,  ep ) dq dp = c-Xll~ll211~ll 2 

where c is a positive real constant. 
(2) There exists a sesquilinear map 

M: 

from H X H into L2(F)such that 
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(i) For all q~ and q, in H 

IIM[q,, q~] IIL2~r)= IIq'llllq'll 

(ii) For a fixed pair q, p in F the sesquilinear form on H 
defined by 

(q, ,q~)~M[q~,+](q,p)  
is bounded. 

Moreover, the first half of the statement (2) is equivalent to the 
following assertion: 

(3) There is a *-monomorphism of the H*-algebra B2(H) of 
the Hilbert-Schmidt operators on H into LE(F), the H*-algebra of 
square-integrable complex-valued functions on the phase space F. 

Proof. Until now we have shown the implications 

(1) = ( 2 i ) =  (3) 

The implication from (3) to (2i) is straightforward, so there remain to be 
shown the implications ( 1 ) ~  (2ii) and ( 2 ) ~  (1). The first one is trivial, 
since by (51) we get 

IM[r ~P ](q,  P)[  = ct/2i(U(q, P)~P, q')l 

<~ cl/2lle( q, p)llll~llllq'll 

so that the boundedness of M[q~, q,](q, p )  follows as an immediate conse- 
quence of the boundedness of the operator U(q, p). 

We shall now prove the implication from (2) to (1). By (2ii), for a fixed 
pair q, p in F the sesquilinear form 

( q~, ~p ) ~ M [ q~, ~p ] ( q, p ) 

is bounded, and hence there exists by Riesz representation theorem a 
(unique) bounded linear operator U(q, p) on H such that 

(q~,U(q,p)r  (q ,p )  

where the bar denotes, as usually, the complex conjugation. Now, by using 
(2i) one gets for all ~, r ~ H 

f r (~ ,  U( q, p)~p )(U( q, p )~p, q~) dqdp = c - l (  M[ ~, ~],  M[@, ~])L2~r) 

= c-lllq, ll211~Pll 2 
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The statement (1) is therefore proven, which concludes the proof of the 
theorem. 

5. PHASE SPACE REPRESENTATIONS OF THE 
QUANTUM-MECHANICAL I-fiLBERT SPACE 

We shall begin with the more general case of a nonatomic identity 
resolution e =  (Pqp: ( q , p ) ~ F } ,  where Pqp is a family of orthogonal 
projections onto the closed subspaces of H satisfying 

frPqp dq dp = c - 11, c > 0 (63) 

and consider the passage to a phase-space representation of the quantum- 
mechanical Hilbert space H given by the correspondence 

~-~ ~/~ ~ L2(F, H), ~ H  (64) 

where L2(F, H) denotes the Hilbert space of Lebesgue square-integrable 
functions from F into H (see, e.g., Yosida, 1968), and/f/er is defined by 

()~l~b)(q, p) = cl/2pqp~, ~. ~ H (65) 

It is clear that 37/~ k belongs to L2(F, H), and furthermore 

ll~t ~ll ~(n m = fr(( ~ r r  )( q, p ) , (  37/e ~b )( q, p )) dqdp 

= p q : )  dqdp = l IW 

which shows that 3~/~: H ~ L 2 ( F , H )  is an isometry (see also Schroeck, 
1982). 

Let now P~ denote the orthogonal projection of LE(F, H) onto/ht~(H). 
Repeating the arguments of Ali and Prugove~ki (1977b) we may show that 
P~ can be represented by an integral operator on LE(F, H); namely, 

(Pe~)(q, p)  = frRe(q,  p; q', p')gP(q', p') dq'dp', ~ L 2 ( r , H )  

(66) 
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with the operator-valued kernel 

Ke(q, P; q', P') = CPqpPq,p, (67) 

Indeed, it can be easily shown that 

' p' ~ q,,, p,,; Re( q, p; q ,  ) = frKe(q, p; p " ) k e ( q " ,  q', p') dq"dp" 

so that /s is a reproducing-kernel in L2(F, H), which implies that Pe, 
defined by (66), is an idempotent. We furthermore have 

k~* (q,  p; q', p')  = Re(q', p'; q, p )  (68) 

* denoting the Hermitian conjugation, which implies that Pe is self-adjoint. 
Moreover, Pe leaves ~ unchanged if �9 ~ .g/e(H), which means that 

3~/e(H ) _c Pe(L2(F, H)), and we actually have 

)l;/e (H)  =Pc(  L2( I', H))  (69) 

since P:J /=  0 whenever �9 ~ 37/e(H )"  
Note finally that the correspondence 

e ~ Pe (70) 

is one-to-one. 
Indeed, if we have Pe = Pf, where e = ( Pqp } and f = ( Oqp ) are two 

identity resolutions obeying (63), then the equality 

(Ped~ )( q, P) = (P/~ )( q, P) 

valid for all q, p ~ I" and all ~ in L2(F, H), and being equivalent to 

frPqpPq,p,*( q', p') dq' dp'= frQqpQq,Sb( q', p') dq' dp" 

leads to 

PqpPq,p, = QqpQq,p, 

for all (q, p) and (q', p') in F, and hence, after substituting q'= q, p ' =  p, 
we obtain for all (q, p) ~ F 

= Qq,  
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that is 

as claimed. 

e=f 
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Note furthermore that bounded operators A ~ B(H)  can also be repre- 
sented by operator-valued kernels according to the prescription (see also 
Schroeck, 1982) 

A ,--+ Ae( q, p; q', p') = cPqpaPq.., 

and that 

frAy(q, p; q', p')(JQ~r p') dq' dp' = c3/2frPqpAPq,p, + dq' dp" 

= c ~/2eqp A r = 

(71) 

(~teAq~)(q,p) 

so that 

( +,A+)= M A+) L2<F.., 

= fr(( )~fe~ )( q, P), "~e(q' P; q'"P') ( )(I:+ )(q', p')) dq dp dq" dp' 

In particular, any quantum-mechaniCal proposition P (being, by definition, 
an orthogonal projector in the Hilbert space H)  can be represented by an 
operator-valued integral kernel 

CPqpPPq,p,= fie(q, P; q', P') 

or, equivalently, by an integral operator on L2(I ", H)  defined by 

(P fcP) (q ,p )= f r i ' e (q ,p ;q ' , p ' )~ (q ' , p ' )dq 'dp  ' (72) 

where ~ ~ L2(r, H). 
P f  is obviously a projection operator, since the kernel/~e(q, P; q', P') is 

easily seen to be reproducing, i.e., 

( " " " "q ' ,p ' )dq"dp" Pe(q,P;q ' ,P ' )  = C ( q , P ; q " , P  )Pe(q ,P",  
JF 
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and 

P*(q,p;q ' ,p ' )=Pe(q ' ,p ' ;q ,p  ) 

where * stands for the Hermitian conjugation. 
Moreover, it can be easily shown that PeP projects onto the subspace 

Pf(LZ(V,  H) )  = )fl~(e(H)) (73) 

Of course, owing to the correspondence 

P ~ e ( o )  ~ )Vle(e(o)) -~- P f ( / :  ( r , / 4 ) )  .-. Pe ~ 

we may expect that the mapping P ~ Pe ? preserves the ortholattice structure 
of the "logic of propositions" associated with a physical system described 
within the framework of the Hilbert space H. (We recall that the above- 
mentioned "logic of propositions" consist of, by definition, all the orthopro- 
jectors or, equivalently, the closed subspaces of the Hilbert space H.) This 
fact can be directly proven as follows (Q and P are here two arbitrary 
orthoprojectors in H): 

(P?Pf~)(q, P) 

I ~ I " I .  

= frO-e(q, P; q', P )Pe(q, P,  q", P")*(q", P") dq'dp'dq"dp" 

= cZfrPqpQPq,p,PPq,,p.~ ( q", p") dq' dp' dq" dp" 

= cfrPqpQPPq.p,,eg(q", p") dq"dp" (74) 

where the last equality is derived with the help of (63), and hence we easily 
get that P ~< O implies p f  ~< p~  and P _1_ O implies P f  .1_ p~. 

To prove the converse implications, insert 

,I, = 

into (74). Then 

(P?Pf~)(q, P) = c3/ freq, Qeeq,,p,, /aq" ap" 

= cX/2pq,Qp~ = [If/le(QP ~)]( q, P) 
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So, if for example P Q P f  = P f ,  then one must have 

lVle( QP~ ) = i~e( Pt~ ) 

and hence 
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In other words, 

Pe '= Pe--Py= (Py) ' 

We thus see that the map P ~ Pe e preserves orthocomplementation too. 
We shall now pass on to the case of an atomic identity resolution 

e = { Pqp } satisfying (63). The passage to a phase-space representation of 
quantum mechanics by using an atomic resolution of the identity was 
studied in great detail by Ali and Prugove~ki (1977b) and it was based on 
the correspondence 

~ Met k ~ L2(F) ,  tk ~ H (75) 

defined by 

( M~d/ )( q, p)  = cl/2( e qp, ~ ) (76) 

where eqp denotes a fixed norm one vector in the range Pqp(H) of the 
one-dimensional projector Pqp belonging to the identity resolution e. 

Obviously, 

( h;/e~)(q, p ) =  cl/2pq,~ = cl/2(eqp, ~/)eqp 

= (Me~)(  q, p)eqp 

QPd/= P~ 

The equality above, valid for all ~ in H, shows that P ~< Q, and we similarly 
prove that p e • pQ implies P • Q. 

Note finally that if P • Q, then we obviously have 

If, in particular, P + Q = I, then 
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so that our former )f/e [see (64) and (65)] can now be obtained from M e. Of 
course, M e can be derived from /(/e too with the help of the map if/e: 
H ~  L2(F, H) defined by 

(Meq~)(q 'P)={ [[()r 0 if(i~le~b)(q,p)=O if ()f/e~)(q' P) v~ 0 

We have 

( Me~ )( q, p)  = cl/2( eqp, ~ ) ~-1[( )~fe~ )( q, P)I[( eqp,( i~lel p )(q, p)) 

SO, we conclude that the two passages to a phase-space representation of 
quantum mechanics described in (65) and (76), respectively, are in fact 
equivalent, if we restrict ourselves to the case of an atomic resolution of the 
identity. 

It is not difficult to show (Ali and Prugove~ki, 1977b) that the map 
~k ~ MeqJ is an isometry from H into L2(F), and that the orthogonal 
projector Pe of L2(F) onto Me(H) is of the form 

( P e r 1 6 2  ~b~ L2(F) 

with the kernel 

ge( q, p; q', p') = C( eqp,eq.p.) 

which obviously has the following properties: 

Ke( q, p; q', p') = fFKe( q, p; q", p")Ke( q", p"; q', p') dq" dp" 

g'e(q, P; q', P') = Ke(q', P'; q, P) 

where the bar stands for the complex conjugation. 
The bounded operators A in B(H)  become represented by integral 

kernels 

Ae( q, p; q', p') = C( eq., Aeq,p,) 

so that 

( ~, A~ ) = ( Me~, M~AtP ) L2(I.) 

= [  ( Me~ ) ( q, p)A~( q, p; q', p')( Me+ )( q' , p') dqdpdq'dp' 
"F 
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In particular, the orthogonal projectors P in H are represented by kernels 

Pe( q, P; q', P') = C( eqp, Peq,p,) 

or, equivalently, by integral operators on L2(F) defined by 

( P f ~ ) ( q ,  p)  = frPe( q, p; q', p ' )~(  q', p') dq'dp', L2(r) 

and we can show, as before, that P f  are projection operators, and that the 
correspondence 

is an orthoinjection of the ortholattice of the orthogonal projectors in H into 
the corresponding ortholattice in the Hilbert space L2(F). 

Clearly, we can also prove that the correspondence 

e ~--~ pe 

between the atomic resolutions of the identity on H and the corresponding 
orthogonal projectors Pe in L2(F) is one-to-one. 
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